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System identification techniques for non-linear systems may require a priori
knowledge of the nature and mathematical form of the non-linearities. However,
for practical systems, this is not always possible. As a result, non-linearities are
often approximated and questions remain as to whether a reasonably accurate
model can be determined. Concurrently, under experimental conditions, some
means of quantifying the amount of measurement noise present in the
identification process must also be obtained. To resolve such issues, a discrete
non-linear system problem is formulated in the presence of uncorrelated noise and
critically examined from the standpoint of identification. Coherence functions are
introduced which are based on a ‘‘reverse path’’ spectral approach recently
developed by the authors for multi-degree-of-freedom systems. These coherence
functions, as calculated from conditioned spectra, indicate the extent of
uncorrelated noise present and the accuracy of assumed mathematical models
employed for describing non-linear systems. Using several example simulation
systems, including a system with a continuous non-linearity described by a
non-integer exponent, both temporal and spectral identification techniques are
employed to study the issues described above.
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1. INTRODUCTION

Consider a non-linear structural or mechanical system described by the following
set of N coupled differential equations:

Mẍ(t)+ d(x(t), ẋ(t))= f(t), (1)

where M is the time-invariant mass matrix, x(t) and f(t) are the generalized
displacement and force vectors, and d(x(t), ẋ(t)) is a vector of motion dependent
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restoring force functions. Decompose d(x(t), ẋ(t)) as follows:

d(x(t), ẋ(t))=Cẋ(t)+Kx(t)+ dn (x(t), ẋ(t)), (2a)

Mẍ(t)+Cẋ(t)+Kx(t)+ dn (x(t), ẋ(t))= f(t), (2b)

where C and K are the time-invariant linear damping and linear stiffness matrices,
and dn (x(t), ẋ(t)) is a vector consisting of only non-linear terms. When the system
is linear, i.e., dn (x(t), ẋ(t))= {0}, or linearized to yield effective damping Ce and
stiffness Ke matrices, identification methods can estimate parameters from
measured time or frequency domain data in the form of natural frequencies vr ,
mode shapes fr and damping ratios zr [1]. However, complexities such as high
modal density, heavily damped modes and measurement noise complicate the
accurate determination of these parameters. These complications may be alleviated
using mode indicator functions to determine valid modes [1] and proper frequency
response estimators, such as ‘‘H1’’ or ‘‘H2’’, to minimize uncorrelated measurement
noise [2, 3]. Nonetheless, it is difficult to construct M, C and K unless a
computational model is available.

To worsen the problem of identification, the effects of dn (x(t), ẋ(t)) for many
physical non-linear systems may substantially influence the dynamic response x(t)
[4–6]. Consequently, modal testing and similar methods are no longer valid. Under
these circumstances identification methods for non-linear systems must be
employed. Unfortunately, literature on such techniques is rather sparse as
discussed in reference [7]. A temporal method known as the Restoring Force or
Force State Mapping Method has been developed [8, 9] and investigated [10, 11].
Likewise, a spectral method based upon a ‘‘reverse path’’ analysis has been
formulated for single-degree-of-freedom systems [12–15] and recently modified for
multi-degree-of-freedom systems [7]. However, many issues remain unresolved
before such methods can be applied to practical problems. Three key questions
follow: (1) Should there be an a priori knowledge of the nature and mathematical
form of dn (x(t), ẋ(t)) before the identification process is initiated? If not, will an
appropriate model result from the approximation of dn (x(t), ẋ(t))? (2) Is the
identification problem compounded by the presence of measurement noise? (3)
Can coherence techniques be used to facilitate the identification process? These
issues are addressed in this article via several simulation examples. Only
continuous non-linearities will be considered with emphasis on polynomial forms.
The ‘‘Reverse Path’’ Spectral Method for multi-degree-of-freedom systems [7] will
be the chief method of evaluation. However, the Temporal Method [8–11] will also
be utilized for one example to illustrate whether the issues raised here are method
dependent. The effects of measurement noise on the estimates are examined for
moderate and high levels of uncorrelated noise. Also, the performance of the
Spectral Method and the associated coherence functions will be critically assessed
under conditions that the nature or shape of the non-linearities is unknown but
approximated by alternative mathematical functions.
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2. PROBLEM FORMULATION

2.1. 

Consider the two-degree-of-freedom system of Figure 1(a) consisting of only
one non-linear spring element with elastic force f e

12(t). Therefore define
dn (x(t), ẋ(t))= dn (x(t)) and equation (2b) becomes

Mẍ(t)+Cẋ(t)+Kx(t)+ dn (x(t))= f(t). (3)

Masses, linear damping and linear stiffness coefficients are listed in Table 1 along
with the system’s modal properties determined by assuming that dn (x(t))= {0}.
Refer to Appendix A for a list of symbols. Also, refer to prior work by Richards
and Singh [7] for the identification of 3- and 5-degree-of-freedom systems. Several

Figure 1. Simulation examples. (a) Two-degree-of-freedom system with a non-linear spring
element of elastic force f e

12(t). (b) Plots of non-linear elastic forces. ——, f e
12(t) of Example I;

---, f e
12(t) of Example II; · · · , linear component of f e

12(t), i.e., k1Dx12(t).
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T 1

True linear system properties of Examples I, II and IV given dn (x(t))= {0}

DOF, i mi (kg) ci (N · s/m) ki (kN/m)

Physical 1 1·0 10·0 100·0
properties 2 1·0 10·0 100·0

Mode, r vr (Hz) zr (%) fr

Modal 1 31·1 1·0 {1·0, 0·6}
properties 2 81·4 2·6 {−0·6, 1·0}

In Example III ci =100 Ns/m, other physical properties remain the same.

examples will be examined here where the non-linear spring stiffness is described
by different mathematical forms. Examples I and II are discussed first where the
elastic force f e

12(t) of Example I is described by linear and cubic terms and f e
12(t)

of Example II is described by linear, quadratic and 5th order terms, as listed in
Table 2. Therefore,

Example I: dn (x(t))=$ b3Dx12(t)3

−b3Dx12(t)3%,

Example II: dn (x(t))=$ b2Dx12(t)2 + b5Dx12(t)5

−b2Dx12(t)2 − b5Dx12(t)5%, (4a, b)

where Dx12(t)= x1(t)− x2(t) and b2, b3 and b5 are coefficients of the polynomial
terms describing f e

12(t). By applying a synthesized Gaussian random excitation
f1(t) with = f1(t)==60 N-rms, mean=0 and variance=1, x(t)= [x1(t) x2(t)]T, ẋ(t)
and ẍ(t) for both examples are calculated using a 5th order Runge–Kutta Fehlberg
numerical integration method. The time steps (Dt) are held constant so that the
Fast Fourier Transform (FFT) can be applied to the data, and high frequency
numerical simulation errors are minimized by choosing a Nyquist frequency eight
times greater than the highest frequency of interest. The following numerical
simulation parameters are used: Dt=0·5 ms, number of samples=15 · (214), total

T 2

True non-linear elastic force f e
12(t) of Examples I–IV

Example f e
12(t) Coefficients

I, III k1Dx12(t)+ b3Dx12(t)3 b3 =500·0 MN/m3

II k1Dx12(t)+ b2Dx12(t)2 + b5Dx12(t)5 b2 =−1·0 MN/m2, b5 =10·0 GN/m5

IV k1Dx12(t)+ h · sgn (Dx12(t))=Dx12(t)=1·8 h=1·0 MN/m1·8
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period=15 · (213) ms. Corresponding stiffness curves are illustrated in Figure 1(b)
where (Dx12(t))m and ( f e

12(t))m are the maximum Dx12(t) and f e
12(t) experienced by

Examples I and II in the numerical simulations.
Under experimental testing conditions, the modal properties of Table 1 are

typically identified from the input/output data of Examples I and II using well
accepted modal analysis or comparable system identification techniques. However,
erroneous modal parameters may result, as illustrated in the frequency domain to
follow. First, take the Fourier transform F[ · ] of equation (3):

B(v)X(v)+Gn (v)=F(v), X(v)=F[x(t)], Gn (v)=F[dn (x(t))],

F(v)=F[f(t)], B(v)=−v2M+ivC+K, B(v)=H(v)−1 (5a–f )

where B(v) and H(v) are the linear dynamic stiffness and compliance matrices,
respectively. Contamination of H(v) results due to the presence of Gn (v). Figure 2
illustrates a sample result in terms of H
 [1]

21 (v) that is estimated from the data of
Example I by the ‘‘H1’’ frequency response estimator [2, 3], where ˆ signifies
estimated, superscript [1] signifies an ‘‘H1’’ estimate, and subscripts 2 and 1 signify
that H
 [1]

21 (v) is a cross-point function between x2(t) and f1(t). The following
procedure is used for all spectral calculations. The sampled data are first divided
into 30 averages consisting of 213 samples per average. Since the Nyquist frequency
is much greater than the highest frequency of interest, an eighth order Chebyshev
type I low pass filter with a cut-off frequency at 100 Hz is applied next. The data
are then resampled at a new Dt'=8 · Dt and a Hanning window is employed to
minimize leakage errors. Also shown in Figure 2 is a true linear H21(v) that is
synthesized from the modal parameters of Table 1. As illustrated, the first mode
of H
 [1]

21 (v) has shifted up in frequency, as expected due to the presence of the
hardening spring non-linearity located between m1 and m2. Worse is the effect on
the second mode which is highly corrupted by the non-linearity. Frequency
domain modal parameter estimation techniques would lead to erroneous results
for the natural frequency of the first mode and modal parameters of the second
mode would be unattainable. The same procedure is also applied to the data of
Example II and problems similar to Example I are encountered. Also, comparable
problems are encountered when time domain techniques [1] are used to estimate
the parameters of Examples I and II. Therefore, appropriate temporal or spectral
non-linear system identification methods must be employed in order to determine
the true parameters of these examples. However, this initial analysis may serve as
a strategy for locating non-linearities. First, observe from Table 1 that the mode
shape of the second mode f2 has a larger relative displacement between m1 and
m2 than the first mode f1. This larger displacement amplifies the non-linear
behavior of the elastic force f e

12(t) causing mode 2 to be more corrupted.
Consequently, by studying frequency response functions at various excitation
levels and examining the deformation shapes of the modes most corrupted by the
non-linear response, non-linearities may be located where the relative
displacements of these mode shapes are largest. For Example I lower excitation
levels would be necessary which lessen the corruption of mode 2 such that a
deformation shape could be obtained. It should also be noted that this strategy
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Figure 2. Dynamic compliance spectra of Example I. (a) Magnitude of H21(v). (b) Phase of
H21(v). ——, H
 [1]

21 (v); ---, H21(v).

will only be successful for systems with well defined deformation patterns. This
issue itself warrants further studies in the presence of non-linear elements.

2.2. 

The identification schemes for non-linear systems discussed in this article
estimate the linear properties and non-linear elastic forces by fitting a
mathematical model of the following form to the measured or simulated excitation
and response data

M
 ẍ(t)+ ẑ(x(t), ẋ(t))= f(t), (6)
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where M
 is the estimated mass matrix and ẑ(x(t), ẋ(t)) is a vector of motion
dependent functions which estimate the system’s constraint forces. Considering
only Examples I and II with linear viscous damping and a non-linear elastic force
fe
12(t), write ẑ(x(t), ẋ(t)) as

ẑ(x(t), ẋ(t))=C
 ẋ(t)+K
 x(t)+ ẑn (x(t)), ẑn (x(t))= s
n

j=1

âjyj (Dx12(t)), (7a, b)

where C
 and K
 are estimated linear damping and stiffness matrices and ẑn (x(t))
contains only the non-linear terms of an assumed model pe

12(t) for describing the
true elastic force f e

12(t). The n unique non-linear functions yj (Dx12(t)) transform
the relative displacement Dx12(t) into the form of each non-linear term of pe

12(t)
and âj are coefficient vectors containing estimates of the coefficients of the
non-linear terms, i.e., âj =[âj −âj ]T. Therefore, equation (6) becomes

M
 ẍ(t)+C
 ẋ(t)+K
 x(t)+ s
n

j=1

âjyj (Dx12(t))= f(t). (8)

The Restoring Force Method is a temporal method which estimates the masses,
linear damping and linear stiffness coefficients as well as the coefficients of the
non-linear elastic force terms by fitting the model (8) to the measured or simulated
excitation and response data in the time domain [11, 12]. The system of equations
(8) is not fit to the data simultaneously; rather, the method begins with the
non-homogeneous equation describing the motion of the forced degree of freedom
(m1) and then iterates to the equation describing the motion of the adjacent degree
of freedom (m2). Alternatively, the Multi-Degree-of-Freedom ‘‘Reverse Path’’
Spectral Method, referred to as the Spectral Method from this point forth, is a
frequency domain system identification approach proposed by us in a recent article
[7]. Applying the Fourier transform F[ · ] to equation (8):

B
 (v)X(v)+ s
n

j=1

âjYj (v)=F(v), X(v)=F[x(t)], Yj (v)=F[ yj (Dx12(t))],

F(v)=F[f(t)], B
 (v)=−v2M
 +ivC
 +K
 (9a–e)

where B
 (v) is an estimate of B(v). For the ‘‘reverse path’’ analysis, the excitation
F(v) is treated as an output to the model and the total response X(v) along with
the non-linear functions Yj (v) are treated as inputs to the model [7]. Therefore,
rewrite equation (9a) as

F(v)=B
 (v)X(v)+ s
n

j=1

âjYj (v). (10)

Equation (10) is also shown graphically in Figure 3(a). By applying spectral
conditioning techniques [7, 16], Figure 3(a) can be redrawn as a conditioned model
with uncorrelated inputs as shown in Figure 3(b), where Yj(−1:j−1)(v) are
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conditioned spectra of the non-linear functions Yj (v), and X(−1:n)(v) contains only
the linear spectral components of the total response X(v). Therefore, the linear
path B
 (v) can now be estimated without any influence from the non-linearities.

Figure 3. ‘‘Reverse path’’ spectral model. (a) Model with correlated inputs, equation (10). (b)
Conditioned model with uncorrelated inputs. (c) ‘‘Forward path’’ of the underlying linear
sub-system.
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Since frequency domain identification techniques typically identify parameters
associated with the linear dynamic compliance matrix H
 (v)=B
 (v)−1, or
derivatives thereof, the linear path is re-reversed as shown in Figure 3(c).
Conditioned frequency response function estimators ‘‘Hc1’’ and ‘‘Hc2’’ are now
defined as

conditioned ‘‘Hc1’’ estimate: [H
 [c1](v)]T =G−1
FF(−1:n)(v)GFX(−1:n)(v),

conditioned ‘‘Hc2’’ estimate: [H
 [c2](v)]T =G−1
XF(−1:n)(v)GXX(−1:n)(v), (11a, b)

where GFF(−1:n)(v), GFX(−1:n)(v) and GXX(−1:n)(v) are conditioned spectral density
matrices. Calculation of these matrices is discussed by Richards and Singh [7]
which is a higher dimensional derivation of the calculation proposed earlier by
Bendat and Piersol [6, 16]. Now, modal parameters can be determined from the
conditioned estimates (11a) or (11b) without any influence from the
non-linearities. The coefficients âj are also recovered as a function of frequency [7],
i.e., âj = âj (v). Since the true coefficients aj are constants for Examples I and II,
accurate estimates should lead to �âj (v)�v = aj , where � · �v signifies spectral
mean.

As will be illustrated in section 4, both Temporal and Spectral Methods
successfully estimate the linear properties of Table 1 and the coefficients of the
nonlinear elastic force terms of Table 2 when the simulated data set is noise free
and the correct model pe

12(t) is chosen to describe the true non-linear elastic force
f e

12(t), i.e., pe
12(t)= f e

12(t). However, in practice, experimental data is corrupted by
measurement noise, and the nature and mathematical form of f e

12(t) is rarely
known. As a result, errors occur in the estimates, especially when measurement
noise is significant or when f e

12(t) is poorly represented by pe
12(t); both issues will

be discussed in sections 5 and 6. Consequently, two of the specific objectives of
this article are to determine when noise levels are tolerable and when an accurate
model has been chosen. The latter of these two objectives has previously been
addressed by Mohammad et al. [10] for the Temporal Method. They determined
the response of the estimated model by numerical integration and compared it with
the response of the system under identification. However, their method requires
the additional computation of the model’s response and a more direct approach
is desirable. Consequently, we adopted the Spectral Method as the primary
identification method. From the Spectral Method one may take advantage of
coherence concepts for measuring the ‘‘cause–effect’’ relationships. These
coherence functions may also indicate the frequencies corrupted by the
non-linearities, which itself may be useful for designing non-linear elements such
as rubber and hydraulic engine mounts [17].

3. COHERENCE FUNCTIONS BASED ON CONDITIONED SPECTRA

Recall the conditioned ‘‘reverse path’’ model of Figure 3(b). Ordinary coherence
functions between the conditioned spectra Yj(−1:j−1)(v) and excitation F1(v) of
F(v) are given as

ĝ2
jF1(−1:j−1)(v)=

=GjF1(−1:j−1)(v)=2
Gjj(−1:j−1)(v)GF1F1(v)

, 1E jE n, (12)
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where GjF1(−1:j−1)(v) is the conditioned cross-power spectral density function
between Yj(−1:j−1)(v) and F1(v), Gjj(−1:j−1)(v) is the conditioned auto-power
spectral density function of Yj(−1:j−1)(v) and GF1F1(v) is the unconditioned
auto-power spectral density function of the excitation F1(v). Similarly, ordinary
coherence functions between each element of X(−1:n)(v)= [X1(−1:n)(v) X2(−1:n)(v)]T

and excitation F1(v) can be calculated by

ĝ2
XiF1(−1:n)(v)=

=GXiF1(−1:n)(v)=2
GXiXi(−1:n)(v)GF1F1(v)

, i=1, 2, (13)

where GXiF1(−1:n)(v) is the conditioned cross-power spectral density function
between Xi(−1:n)(v) and F1(v), and GXiXi(−1:n)(v) is the conditioned auto-power
spectral density function of Xi(−1:n)(v). The coherence functions of equations (12)
and (13) are scalar values between 0 and 1 at each frequency and they indicate
the amount of contribution from each respective input to the model of Figure 3(b).

Notice in Figure 3(b) that no conditioning is used to uncorrelate the elements
X1(−1:n)(v) and X2(−1:n)(v) of X(−1:n)(v), i.e., the linear component of the response
X(−1:n)(v) remains a vector input to the model. Therefore, a multiple coherence
function cannot be defined in its conventional form [6, 16] for this model.
However, cumulative coherence functions ĝ2

Mi (v) which include only one of the
coherence functions of equation (13) in the summation are defined here as

ĝ2
Mi (v)= g2

XiF1(−1:n)(v)+ g2
YF1

(v), i=1, 2; ĝ2
YF1

(v)= s
n

j=1

g2
jF1(−1:j−1)(v),

(14a, b)

which are also scalar values between 0 and 1 at each frequency and may be
considered as a measure of the accuracy of the entire model, Figure 3(b). Each
coherence function ĝ2

Mi (v) is given as the sum of two terms. The first term
ĝ2

XiF1(−1:n)(v) indicates contribution from the linear spectral component of the
response of the ith mass, and the second term ĝ2

YF1
(v) indicates contribution from

the non-linearities. Analysis of ĝ2
XiF1(−1:n )

(v) and ĝ2
YF1

(v) may be useful when it is
desired to have non-linearities contributing at certain frequencies, by design [17].

Finally, partial coherence functions are defined for each path of the model of
Figure 3(b). However, only the partial coherence functions between the elements
of X(−1:n)(v) and F1(−1:n)(v) are given here as

j
 2XiF1(−1:n)(v)=
=GXiF1(−1:n)(v)=2

GXiXi(−1:n)(v)GF1F1(−1:n)(v)
, i=1, 2. (15)

The partial coherence functions (15) are similar to the ordinary coherence
functions (13) with the exception that the denominator of equation (15) contains
the conditioned auto-power spectral density function GF1F1(−1:n)(v). Consequently,
j
 2XiF1(−1:n)(v) are the ordinary coherence functions for the linear sub-system of
Figure 3(c). These functions indicate the accuracy of (11a, b), and

j
 2XiF1(−1:n)(v)1 =H [c1]
i1 (v)=2

=H [c2]
i1 (v)=2 , i=1, 2, (16)
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T 3

Estimated physical properties of Example I by the Temporal Method

Model,
noise level i m̂i (kg) ĉi (N · s/m) k
 i (kN/m) Estimated coefficients of yi (t)

AI, none 1 1·0 (0·0) 10·0 (0) 100·0 (0·0) â3(v)=500·0 MN/m3 (0·0)
2 1·0 (0·0) 10·0 (0) 100·0 (0·0)

AI, moderate 1 1·0 (0·0) 10·0 (0) 100·2 (0·2) â3(v)=497·4 MN/m3 (0·5)
2 1·0 (0·0) 10·0 (0) 99·7 (0·3)

AI, high 1 0·8 (20·0) 13·8 (38·0) 118·4 (18·4) â3(v)=318·1 MN/m3 (36·4)
2 0·7 (30·0) 5·9 (41·0) 75·6 (24·4)

BI, none 1 0·9 (10·0) 10·9 (9·0) 257·7 (157·7) â5(v)=252·7 GN/m5 (–)
2 0·9 (10·0) 8·6 (14·0) 93·7 (6·3)

% Error= (=estimated− true=/true) · 100, given in parentheses.

where the superscripts [c1] and [c2] signify ‘‘Hc1’’ and ‘‘Hc2’’ estimates, respectively.
Note, equation (16) is an approximation since F(v)= [F1(v) 0]T for
Examples I and II, and therefore GXF(−1:n)(v) of equation (11b) is a column vector
of dimension 2. Accordingly, this leads to a pseudo-inverse to solve for
[H
 [c2](v)]T = [H
 [c2]

11 (v) H
 [c2]
21 (v)].

4. PRELIMINARY RESULTS

Consider the simulated input/output data of Example I in the absence of
uncorrelated noise and assume that the correct Model AI of the elastic force f e

12(t)
has been chosen:

Model AI: pe
12(t)= k
 1Dx12(t)+ â3y3(Dx12(t))= k
 1Dx12(t)+ â3Dx12(t)3. (17)

From the Temporal Method, the estimated mass, damping and stiffness
coefficients and the coefficient â3 of the non-linear function y3(Dx12(t)) are listed
in Table 3 along with the percentage error of the estimated to true values. As can
be seen, the method accurately estimates the system properties. For the sake of
comparison, since modal parameters are estimated from equations (11a) or (11b)
for the Spectral Method, Table 4 lists modal parameters which are calculated from
the mass, damping and stiffness coefficients of Table 3.

Next, the Spectral Method is employed to the data using Model AI of equation
(17). A sample conditioned ‘‘Hc2’’ estimate from equation (11b), designated as
H
 [c2]

11 (v), is illustrated in Figure 4. Also shown are H
 [1]
11 (v) and H11(v). The

magnitude and phase are both well estimated by H
 [c2]
11 (v). The underlying linear

system’s modal parameters are calculated from the ‘‘Hc2’’ spectra using a modal
parameter estimation software [18]. In Table 5, results and errors between the
estimated and true values are listed. As shown, this method has successfully
recovered the true linear parameters. Illustrated in Figure 5, is the complex valued
â3(v) whose trend is constant with frequency. The spectral mean �â3(v)�v listed
in Table 5 suggests some error in the estimate since the true coefficient b3 is a real



. .   . 424

valued constant. However, the real part of the spectral mean is three orders of
magnitude greater than the imaginary part and the percentage error between
=�â3(v)�v = and b3 is less than 1%. For the sake of brevity, the phase spectra of
H(v) and H
 (v) as well as the spectra of the estimated coefficients âj (v) will be
excluded from the remaining results. Unless otherwise mentioned, assume that the
results are similar to those presented in Figures 4 and 5. The cumulative coherence
function ĝ2

M1(v) illustrated in Figure 6(a) indicates the overall certainty of the
assumed mathematical model. Aside from a minor drop in coherence at the
frequency of the first resonance, ĝ2

M1(v) is unity indicating that an accurate model
has been chosen. This is expected since uncorrelated noise is absent and
pe

12(t)= f e
12(t) for Model AI. The coherence functions ĝ2

YF1
(v) and ĝ2

X1F1(−1)(v) shown
in Figure 6(b) illustrate the contribution of the separate paths, i.e., ĝ2

YF1
(v) shows

the contribution of Y3(v) since y3(Dx12(t)) is the only non-linear function included
in this model, and g2

X1F1(−1) (v) shows contribution of linear component X1(−1)(v)
of the response X1(v). The coherence function ĝ2

X1F1(−1)(v) peaks in the 50 Hz
frequency range and at the upper end of the spectrum, while the coherence
function ĝ2

YF1
(v) of the cubic non-linear function Y3(v) does the opposite. This

may be explained as follows. First, ĝ2
YF1

(v) is high at frequencies corresponding
to the peaks of H
 [c2]

11 (v) of Figure 4(a). This suggests that the cubic non-linearity
dominates at these frequencies which is understandable since dominant non-linear
behavior is expected at frequencies where large amplitudes occur. In contrast, the
linear path X1(−1)(v) is not as apparent at these frequencies as illustrated by
ĝ2

X1F1(−1)(v). However, ĝ2
X1F1(−1)(v) increases in the 50 Hz range as mentioned. This

is also understood by examining Figure 4(a). In the 50 Hz range the two estimates
H
 [1]

11 (v) and H
 [c2]
11 (v) coincide with H11(v). Therefore, H
 [1]

11 (v) is accurate in this
frequency range. However, since the conventional ‘‘H1’’ estimator does not
account for non-linearities, the response in this range must be close to the linear
behavior. Hence, the reason for an increase in ĝ2

X1F1(−1)(v) values in this range.
Although both ĝ2

M1(v) and ĝ2
M2(v) are examined for each model, ĝ2

M2(v) is excluded
since both are similar. The ordinary coherence ĝ2

X2F1(−1)(v) which is similar to
ĝ2

X1F1(−1)(v) is also excluded for the same reason. The results of this section serve

T 4

Estimated modal properties of Example I by the Temporal Method

Model, noise level Mode, r v̂r (Hz) z
 r (%) f
 r

AI, none 1 31·1 (0·0) 1·0 (0·0) {1·0, 0·6}
2 81·4 (0·0) 2·6 (0·0) {−0·6, 1·0}

AI, moderate 1 31·1 (0·0) 1·0 (0·0) {1·0, 0·6}
2 81·6 (0·2) 2·6 (0·0) {−0·6, 1·0}

AI, high 1 32·0 (2·9) 0·9 (10·0) {1·0, 0·7}
2 96·2 (18·2) 3·3 (26·9) {−0·7, 1·0}

BI, none 1 33·9 (9·0) 0·9 (10·0) {1·0, 0·8}
2 123·8 (52·1) 1·8 (30·8) {−0·8, 1·0}

% Error= (=estimated− true=/true) · 100, given in parentheses.
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Figure 4. Dynamic compliance spectra of Example I using Model AI for ‘‘Hc2’’ estimate. (a)
Magnitude of H11(v). (b) Phase of H11(v). ——, H
 [c2]

11 (v); ---, H
 [1]
11 (v); o o o, H11(v).

as the starting point as other complications are included in the identification
scheme.

5. INCLUSION OF UNCORRELATED NOISE

5.1. 

In the presence of uncorrelated noise, the response and excitation vectors are
modified as

x̃(t)= x(t)+ nx (t), f	 (t)= f(t)+ nf (t), (18a, b)
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T 5

Estimated properties of Example I by the Spectral Method

Model, Mode, Spectral mean of estimated coefficients
noise level r v̂r (Hz) z
 r (%) f
 r of yi (t)

AI, none 1 31·2 (0·3) 1·0 (0·0) {1·0, 0·6} �â3(v)�v =501·4+0·2i MN/m3 (0·3)
2 81·6 (0·2) 2·6 (0·0) {−0·6, 1·0}

AI, moderate 1 31·1 (0·0) 1·1 (10·0) {1·0, 0·6} �â3(v)�v =496·0−8·4i MN/m3 (1·9)
2 82·1 (0·9) 1·8 (30·8) {−0·6, 1·0}

AI, high 1 32·5 (4·5) 0·1 (90·0) {1·0, 0·8} �â3(v)�v =160·8+59·7i MN/m3 (68·9)
2 – (–) – (–) –

BI, none 1 34·0 (9·3) 1·2 (20·0) {1·0, 0·8} �â5(v)�v =251·9+0·3i GN/m5 (–)
2 118·5 (45·6) 1·6 (38·5) {−0·8, 1·0}

% Error= (=estimated− true=/true) · 100, given in parentheses.
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Figure 5. Spectrum of estimated coefficient â3(v) of Model AI. (a) Re [â1(v)]. (b) Im [â1(v)]. ——,
â3(v); www, true coefficient b3.

where x̃(t) is the contaminated response vector of the true response vector x(t) by
uncorrelated noise vector nx (t). Likewise, f	 (t) is the contaminated excitation vector
of the true excitation vector f(t) by uncorrelated noise vector nf (t). The Fourier
transform F[ · ] of equations (18a, b) leads to

X	 (v)=X(v)+NX (v), F	 (v)=F(v)+NF (v) (19a, b)
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and since NX (v) and NF (v) are uncorrelated noise spectra,

GXNX (v)=
2
T

E[X(v)* · NX (v)T]= 0, GXNF (v)=
2
T

E[X(v)* · NF (v)T]= 0,

GFNX (v)=
2
T

E[F(v)* · NX (v)T]= 0, GFNF (v)=
2
T

E[F(v)* · NF (v)T]= 0,

GNXNF (v)=
2
T

E[NX (v)* · NF (v)T]= 0, (20a–e)

Figure 6. Coherence functions of Model AI. (a) Cumulative coherence function ĝ2
M1(v). (b)

Coherence functions ĝ2
X1F1(−1)(v) and ĝ2

YF1(v). ——, ĝ2
X1F1(−1)(v); ---, ĝ2

YF1
(v).
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where 0 is a square null matrix of dimension 2. However,

4GNXNX (v)7 =
2
T

E[NX (v)* · NX (v)T]$ 0,

4GNFNF (v)7 =
2
T

E[NF (v)* · NF (v)T]$ 0, (21a, b)

where 4GNXNX (v)7 and 4GNFNF (v)7 are square diagonal matrices of dimension 2.
When conventional frequency response estimators are employed, noise only exists
in the auto-power spectra of X	 (v) and F	 (v). However, when calculating the
conditioned estimates of equations (11a, b), noise exists in additional spectra, as
follows. The noise nx (t) contaminates the n unique non-linear functions yj (Dx12(t))
since they are calculated directly from the contaminated response x̃(t), i.e.,

ỹj = ỹj (Dx̃12(t)),

Dx̃12(t)= x̃1(t)− x̃2(t)= x1(t)+ nx1(t)− x2(t)− nx2(t)=Dx12(t)+Dnx (t),

Dnx (t)= nx1(t)− nx2(t). (22a–c)

Since the functions ỹj (Dx̃12(t)) are of the polynomial form, they can be written as

ỹj (Dx̃12(t))= yj (Dx12(t))+ nyj (t), yj (Dx12(t))= yj (x(t)),

nyj (t)= nyj (x(t), nx (t)), (23a–c)

where ỹj (Dx̃12(t)) is grouped into a term which is only a function of x(t) without
noise and a term which is a function of x(t) and nx (t). To assimilate equations
(23a–c) consider a cubic function y3(Dx12(t))=Dx12(t)3 calculated from the
contaminated response x̃(t):

ỹ3(Dx̃12(t))= (Dx̃12(t))3 = (Dx12(t)+Dnx (t))3

=Dx12(t)3 +3Dx12(t)2Dnx (t)+3Dx12(t)Dnx (t)2 +Dnx (t)3

= y3(Dx12(t))+ nyj (t),

nyj (t)=3Dx12(t)2Dnx (t)+3Dx12(t)Dnx (t)2 +Dnx (t)3. (24a, b)

As shown, ỹ3(Dx̃12(t)) is arranged into a term which is only a function of x(t)
without noise and a term which is a function of x(t) and nx (t). This procedure can
be extended to ỹj (Dx̃12(t)) of any polynomial order j. The Fourier transform F[ · ]
of equation (23a) leads to

Y	 j (v)=Yj (v)+Nj (v), Yj (v)=F[ yj (Dx12(t))], Nj (v)=F[nyj (t)]

(25a–c)
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and as a result of equations (23b) and (23c),

GXj (v)=
2
T

E[X(v)* · Yj (v)]$ {0}, GXNj (v)=
2
T

E[X(v)* · Nj (v)]$ {0},

GNXNj (v)=
2
T

E[NX (v)* · Nj (v)]$ {0}, GjNj (v)=
2
T

E[Yj (v)* · Nj (v)]$ 0,

GNXj (v)=
2
T

E[NX (v)* · Yj (v)]= {0}, GNjNj (v)=
2
T

E[Nj (v)* · Nj (v)]$ 0,

(26a–f )

where {0} are null column vectors of dimension 2. Note that equations (26a–f )
are true in a general sense; however, depending on the form of yj (Dx12(t)), some
of the spectral density functions may be zero. Therefore, equations (26a–f ) give
the worst possible case. Also, in general components of Y	 j (v) and Y	 i (v) may be
correlated depending on the form of ỹj (Dx̃12(t)) and ỹi (Dx̃12(t)),

Gij (v)=
2
T

E[Yi (v)* · Yj (v)]$ 0, GiNj (v)=
2
T

E[Yi (v)* · Nj (v)]$ 0,

GNij (v)=
2
T

E[Ni (v)* · Yj (v)]$ 0, GNiNj (v)=
2
T

E[Ni (v)* · Nj (v)]$ 0.

(27a–d)

Consequently, from equations (20a–e), (21a, b), (26a–f ) and (27a–d),

G	 XX (v)=GXX (v)+ 4GNXNX (v)7, G	 XF (v)=GXF (v),

G	 Xj (v)=GXj (v)+GXNj (v)+GNXNj (v), G	 FF (v)=GFF (v)+ 4GNFNF (v)7,

G	 Fj (v)=GFj (v), G	 jj (v)=G	 jj (v)+2 Re [G	 jNj (v)]+G	 NjNj (v),

G	 ij (v)=Gij (v)+GiNj (v)+GNij (v)+GNiNj (v). (28a–g)

As given by equations (28a–g), noise corrupts most of these unconditioned spectral
functions and matrices. As a result, noise also contaminates conditioned spectral
density functions used to calculate ‘‘Hc1’’ and ‘‘Hc2’’ estimates of equations (11a, b)
and the coherence functions of section 3 since conditioned spectra are calculated
from equations 28(a–g). Additional research is needed in order to minimize the
presence of noise in equations (28a–g) by considering a reference approach [19]
which yields an improved estimate of auto-power spectral density functions.

For the Temporal Method, similar problems occur when uncorrelated noise is
present since the non-linear functions ỹj (Dx̃12(t)) are calculated directly from the
contaminated response x̃(t). Increasing the length of time series utilized by the
Temporal Method minimizes contamination of uncorrelated noise since the
method is based on a least squares solution. Alternatively, time domain averaging
operations may be performed or cross-correlation techniques may be adapted.
This is suggested as a topic for future research.
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Figure 7. Auto-power spectra of noise-free data, moderate and high noise levels. (a) Response
auto-power spectra. (b) Excitation auto-power spectra. ——, Noise-free data; ---, high noise level;
- · - · , moderate noise level.

5.2. 

Both methods are evaluated next by adding ‘‘white’’ uncorrelated noise to the
simulated excitation and response data. The auto-power spectra of X1(v), F1(v),
NX1(v) and NF1(v) are shown in Figure 7; those of X2(v) and NX2(v) are not shown
since they are similar to those of X1(v) and NX1(v). These noise levels are
comparable to those used by Mohammad et al. [10] and Yang and Ibrahim [11]
in their studies based on the Temporal Method. The correct non-linear form is
assumed for this study, i.e., equation (17). Shown in Figure 8 are sample dynamic
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compliance functions H
 [c2]
21 (v), H
 [1]

11 (v) and H11(v). For the moderate noise case the
second resonant peak of H
 [c2]

21 (v) reveals some noise corruption, as shown in
Figure 8(a). Estimated parameters are listed in Tables 3–5 based on both methods.
As shown, not much error has occurred in these estimates with the exception of
z2 by the Spectral Method. However, for the high noise case, estimates are rather
poor, as shown in Figure 8(b) and listed in Tables 3–5. In fact, since the second
mode of the ‘‘Hc2’’ estimates are undetectable, no parameters can be determined
for this mode by the Spectral Method. Illustrated in Figure 9 are ĝ2

M1(v) for the
two noise levels. The large amount of noise responsible for the inaccurate
identification in the high noise case is indicated by ĝ2

M1(v) of Figure 9(b). This

Figure 8. Magnitude of dynamic compliance spectra of Example I using Model AI for ‘‘Hc2’’
estimate. (a) Moderate noise case. (b) High noise case. ——, H
 [c2]

11 (v); ---, H
 [1]
11 (v); www, H11(v).
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Figure 9. Cumulative coherence functions ĝ2
M1(v) of Model AI. (a) Moderate noise case. (b) High

noise case.

suggests that the coherence techniques can in fact aid in determining when noise
levels are intolerable.

To this point no results for ‘‘Hc1’’ estimates based on equation (11a) or partial
coherence functions as defined by equation (15) have been shown. These estimates
can also be investigated; however, they may be corrupted by the numerical errors
introduced by simulating the lightly damped systems, i.e., Examples I and II. To
minimize these errors, the damping coefficients of Example I are increased by a
factor of 10 to form a new Example III. Applying the Spectral Method with Model
AIII which takes the same form as AI of equation (17), conditioned ‘‘Hc1’’ and ‘‘Hc2’’
estimates are calculated in the absence of uncorrelated noise. Shown in Figures 10
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and 11 are H
 [c2]
11 (v), H
 [c1]

11 (v), H
 [1]
11 (v), H11(v) and j
 2X1F1(−1:n)(v). Some numerical

errors still exist since H
 [c2]
11 (v)$H
 [c1]

11 (v) and j
 2X1F1(−1:n)(v) drops below unity at the
first resonance peak. However, in the absence of noise both H
 [c2]

11 (v) and H
 [c1]
11 (v)

are accurate estimates.
The conditioned ‘‘Hc1’’ and ‘‘Hc2’’ estimates, as proposed in equations (11a, b),

are analogous to the conventional ‘‘H1’’ and ‘‘H2’’ estimates currently used for
linear systems [2, 3]. Therefore, intuition may lead one to expect the ‘‘Hc2’’ estimate
to perform better than the ‘‘Hc1’’ estimate in the presence of uncorrelated noise
only in the excitation and none in the response. Likewise, one would expect the
‘‘Hc1’’ estimate to perform better than the ‘‘Hc2’’ estimate in the presence of

Figure 10. Magnitude of dynamic compliance spectra of Example III using Model AIII for ‘‘Hc2’’
estimate. (a) ——, H
 [c2]

11 (v); ---, H
 [1]
11 (v); www, H11(v). (b) ——, H
 [c1]

11 (v); ---, H
 [1]
11 (v); www, H11(v).
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Figure 11. Partial coherence function j
 2X1F1(−1:n)(v) of Model AIII.

uncorrelated noise only in the response and none in the excitation. To illustrate
this, H
 [c2]

11 (v), H
 [c1]
11 (v) and H11(v) are illustrated in Figure 12(a) for a high level

of uncorrelated noise in the excitation only. As expected, although the results are
still ‘‘noisy’’, H
 [c2]

11 (v) is the better estimate. Figure 12(b) illustrates the same
estimates for high levels of uncorrelated noise in the responses only. Unlike what
was expected, the ‘‘Hc2’’ method is still a slightly better estimate. This outcome may
be a result of the conditioning required to calculate the ‘‘Hc1’’ and ‘‘Hc2’’ estimates.
However, this issue requires additional examination in future experimental
studies.

6. EXAMINATION OF ALTERNATIVE NON-LINEAR MODELS

The following results illustrate the consequences of identification when alternate
formulae are chosen to describe the elastic behavior of the non-linear spring
element, i.e., either correct (pe

12(t)= f e
12(t)), incorrect (pe

12(t)$ f e
12(t)) or

approximate (pe
12(t)1 f e

12(t)) mathematical models will be employed. Due to the
heavy damping of the second mode, Example III of section 5.2 will not be
evaluated in the following results since it is difficult to determine how well the
second mode is estimated by the Spectral Method. Therefore, only Examples I and
II will be investigated. As a consequence, since numerical errors resulting from the
simulations of Examples I and II corrupt the ‘‘Hc1’’ estimates of equation (11a)
and partial coherence functions of equation (15), only ‘‘Hc2’’ estimates of equation
(11b), ĝ2

M1(v) and ĝ2
YF1

(v) of equations (14a, b) will be shown. Finally, since the
effects of noise on both Temporal and Spectral Methods have already been
examined, data for the following studies are noise free for the sake of maintaining
a clear focus on results with alternative models.
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6.1.    

Recall, in section 4 where both Temporal and Spectral Methods successfully
identify Example I using Model AI of equation (17) which correctly models f e

12(t).
Now assume that the form of the non-linearity f e

12(t) is incorrectly modelled as
a linear and fifth order polynomial:

Model BI: pe
12(t) = k1Dx12(t)+ a5y5(Dx12(t))= k1Dx12(t)+ a5Dx5

12(t). (29)

Figure 12. Magnitude of dynamic compliance spectra of Example III using Model AIII for Spectral
Method calculations. (a) High noise level in excitation only. (b) High noise level in response only.
——, H
 [c2]

11 (v); ---, H
 [c1]
11 (v); www, H11(v).
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Figure 13. Spectra for Example I using Model BI for Spectral Method calculations. (a) Magnitude
of H11(v). ——, H
 [c2]

11 (v); ---, H
 [1]
11 (v); www, H11(v). (b) Cumulative coherence function ĝ2

M1(v).

The procedures of section 4 are again carried through here for both methods and
results are given in Tables 3–5 and in Figure 13(a). As shown, the estimates are
rather poor. However, without knowing the true parameters, one may not be able
to conclude that Model BI is incorrect. This acknowledges the importance of
diagnostic tools to determine the validity of the models, such as the cumulative
coherence function ĝ2

M1(v) of Figure 13(b). As g2
M1(v) indicates, BI is an inaccurate

model above 70 Hz. However, g2
M1(v) is near unity elsewhere. This may lead one

to believe BI is accurate below 70 Hz, when in fact the first mode of H
 [c2]
21 (v) is

shifted to a higher frequency than the true natural frequency. Therefore, in order
to prevent this misinterpretation and to ensure that the best possible model is
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chosen, cumulative coherence functions ĝ2
M1(v) of several models should be

compared. Doing so with ĝ2
M1(v) of Models AI and BI indicates that AI is more

accurate.
Observe that both Temporal and Spectral Methods give similar results,

suggesting that erroneous estimates resulting from an incorrect non-linear model
are not method dependent. Subsequently, results to follow will include only those
from the Spectral Method, but any dramatic differences between estimates
obtained from the two methods will be mentioned.

Figure 14. Spectra for Example I using Model CI for Spectral Method calculations. (a) Magnitude
of H11(v). ——, H
 [c2]

11 (v); ---, H
 [1]
11 (v); www, H11(v). (b) Coherence functions ĝ2

M1(v) and ĝ2
YF1

(v).
——, ĝ2

M1(v); ---, ĝ2
YF1

(v).
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Next consider Model CI which assumes that f e
12(t) contains a quadratic term:

Model CI: pe
12(t)= k1Dx12(t)+ a2y2(Dx12(t))= k1Dx12(t)+ a2x2

12(t). (30)

Physically, this type of non-linearity represents a spring with hardening stiffness
in tension and softening stiffness in compression when a2 q 0, and vice versa when
a2 Q 0. Estimates H
 [1]

11 (v), H
 [c2]
11 (v) and true H11(v) are shown in Figure 14(a). The

two estimates are similar but deviate from the true H11(v) suggesting that Model
CI does not improve the identification over a similar but linear model. The
cumulative coherence ĝ2

M1(v) exceeds 0·85 up to approximately 70 Hz, then it drops
off as shown in Figure 14(b). Comparing ĝ2

M1(v) of Models AI, BI and CI, indicates
that CI is the least accurate model chosen thus far, and the coherence function
ĝ2

YF1
(v) also shown in Figure 14(b) is poor at all frequencies, indicating that the

quadratic term adds zero contribution to the model. Hence, this is the reason why
H
 [1]

11 (v) and H
 [c2]
11 (v) are similar. However, in the small band between 45 and 55 Hz

the cumulative coherence is close to unity. This is due to the fact that H
 [c2]
11 (v) and

H11(v) coincide in this range, as shown in Figure 14(a). Therefore, even such an
incorrect model yields an accurate representation in this frequency range.

The next Model DI includes both a quadratic and cubic term:

Model DI: pe
12(t)= k1Dx12(t)+ a2y2(Dx12(t))+ a3y3(Dx12(t))

= k1Dx12(t)+ a2Dx2
12(t)+ a3Dx3

12(t). (31)

Estimates H
 [c2]
11 (v) and H
 [1]

11 (v) are illustrated in Figure 15(a). As shown, H
 [c2]
11 (v)

closely matches true H11(v). Indication that DI is an accurate model is given by
ĝ2

M1(v) of Figure 15(b). Since both DI and AI are accurate, this illustrates that the
identification process may not yield an unique model. The coherence function
ĝ2

YF1
(v) also shown in Figure 15(b) is similar to ĝ2

YF1
(v) of Model AI, Figure 6(b),

suggesting that the two models are similar. The spectral means of â2(v) and â3(v)
are �â2(v)�v =15·57−11·22i kN/m2, �â3(v)�v =501·28+0·47i MN/m3. The
spectral mean �â3(v)�v of the cubic non-linearity is an accurate estimate with an
imaginary part three orders of magnitude less than the real part. However, the
spectral mean �â2(v)�v of the quadratic coefficient has an imaginary part of the
same magnitude as the real part. This may serve as an indication that the quadratic
term is not present in f e

12(t).
The cumulative study of Models AI, BI, CI and DI suggests a possible strategy

one may employ for determining an accurate model for describing Example I.
Although real systems may be more difficult to evaluate, coherence functions as
illustrated here can provide significant clues and insight into the validity of models
chosen and indicate the significance of each term included in the model pe

12(t) for
actual fe

12(t). A final note concerning the presence of uncorrelated noise. As shown
in this section, the cumulative coherence functions indicate when an inaccurate
model is being employed by assuming values less than unity. And, as shown in
section 5, the same is true when uncorrelated measurement noise is present in the
excitation and response data. So, it is not possible to differentiate between the two
errors when both are simultaneously present. Therefore, it is important to ensure,
whenever possible, that measurement signals are noise free, or since this is not
realistic, that noise levels are kept as low as possible.
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Figure 15. Spectra for Example I using Model DI for Spectral Method calculations. (a) Magnitude
of H11(v). ——, H
 [c2]

11 (v); ---, H
 [1]
11 (v); www, H11(v). (b) Coherence functions ĝ2

M1(v) and ĝ2
YF1

(v).
——, ĝ2

M1(v); ---, ĝ2
YF1

(v).

6.2.    

Models given in Table 6 are used next to identify Example II by the Spectral
Method. Model AII is composed of the correct terms to model f e

12(t); and, as listed
in Table 7, the resulting estimates are accurate. Models BII and CII contain only
a fifth order and only a quadratic term, respectively. These models where chosen
to illustrate the consequences of leaving out a term from pe

12(t) to describe f e
12(t).

As a result, neither model produces accurate estimates. However, comparison
shows that inclusion of only the fifth order term, Model BII, yields a better
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estimate. Model DII represents f e
12(t) by a cubic non-linearity. Modelling

non-linearities by a cubic polynomial is a common assumption [12–15, 20].
However, as shown for this system, the model results in poor estimates. In fact,
the estimated damping for the first mode is negative.

One possible strategy for modelling continuous non-linearities is by polynomial
expansions. Models EII and FII represent f e

12(t) by expansions including linear
through fifth order and linear through seventh order terms, respectively. As
Table 7 shows, such models result in accurate estimates of the modal parameters.
Notice that the spectral means of the coefficients of the quadratic �â2(v)�v and
fifth order �â5(v)�v terms are well estimated with negligible imaginary parts,
where as the other coefficients have spectral means with imaginary parts
comparable to their real parts. This may serve as an indicator of which terms are
truly present.

Models EII and FII both contain the correct terms of fe
12(t) which may be a reason

why they result in accurate estimates. Therefore, the next models considered, GII,
HII and III, which are polynomials of the seventh, ninth and twelfth order,
respectively, explicitly exclude the correct terms. Although more error exists in the
modal estimates using these models when compared with the modal estimates

T 6

Models used in the estimation of Example II

Model pe
12(t)

AII k1Dx12(t)+ a2y2(Dx12(t))+ a5y5(Dx12(t))= k1Dx12(t)+ a2Dx2
12(t)+ a5Dx5

12(t)

BII k1Dx12(t)+ a5y5(Dx12(t))= k1Dx12(t)+ a5Dx5
12(t)

CII k1Dx12(t)+ a2y2(Dx12(t))= k1Dx12(t)+ a2Dx2
12(t)

DII k1Dx12(t)+ a3y3(Dx12(t))= k1Dx12(t)+ a3Dx3
12(t)

EII k1Dx12(t)+ s
5

j=2

ajyj (Dx12(t))= k1Dx12(t)+ s
5

j=2

ajDxj
12(t)

FII k1Dx12(t)+ s
7

j=2

ajyj (Dx12(t))= k1Dx12(t)+ s
7

j=2

ajDxj
12(t)

GII k1Dx12(t)+ s
7

j=3
j$ 5

ajyj (Dx12(t))= k1Dx12(t)+ s
7

j=3
j$ 5

ajDxj
12(t)

HII k1Dx12(t)+ s
9

j=3
j$ 5

ajyj (Dx12(t))= k1Dx12(t)+ s
9

j=3
j$ 5

ajDxj
12(t)

III k1Dx12(t)+ s
12

j=3
j$ 5

ajyj (Dx12(t))= k1Dx12(t)+ s
12

j=3
j$ 5

ajDxj
12(t)
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GII 1 30·0 (3·5) 0·2 (80·0) {1·0, 0·6} �â3(v)�v =26·1−0·9i MN/m3

�â4(v)�v =−466·5+9·7i MN/m4

2 77·0 (5·4) 1·7 (34·6) {−0·5, 1·0} �â6(v)�v =53·9−2·2i GN/m6

�â7(v)�v =976·8+3·0i GN/m7

HII 1 30·6 (1·6) 0·5 (50·0) {1·0, 0·6} �â3(v)�v =19·2−0·4i MN/m3

�â4(v)�v =−819·8+7·7i MN/m4

�â6(v)�v =216·8−3·8i GN/m6

2 78·6 (3·4) 2·0 (30·0) {−0·6, 1·0} �â7(v)�v =1815·4+22·9i GN/m7

�â8(v)�v =−17·8+0·4i TN/m8

�â9(v)�v =−102·2−4·1i TN/m9

III 1 30·6 (1·6) 0·5 (50·0) {1·6, 1·0} �â3(v)�v =12·2+1·6e–2i MN/m3

�â4(v)�v =−1·6+3·4e–2i GN/m4

�â6(v)�v =980·5−42·4i GN/m6

�â7(v)�v =3·5−6·8e–2i TN/m7

�â8(v)�v =−269·1+17·5i TN/m8

2 80·4 (1·2) 2·5 (3·8) {1·0, −1·6} �â9(v)�=−526·3+25·8i TN/m9

�â10(v)�v =34·0−3·0i PN/m10

�â11(v)�v =28·7−2·5i PN/m11

�â12(v)�v =−1·6+0·8i EN/m12

% Error= (=estimated− true=/true) · 100, given in parentheses.
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using Models EII and FII, the error tends to decrease with increasing terms. This
suggests that polynomial expansions may be successful for estimating
non-linearities. It should however be noted, that an increase in the number of
terms in the polynomial expansion also increases the computation of the
conditioned spectral density matrices necessary for the Spectral Method. The same
is true of the Temporal Method since the increased computation entails the
inversion of an increasingly larger system matrix. Also, note that the use of higher
order polynomial expansions may not lead to one unique model since many
models including AII, EII, FII, GII, HII and III produce relatively accurate results.

7. NON-LINEARITY WITH NON-INTEGER EXPONENT

The final example is considered to examine the difficulties of identifying a system
with a non-polynomial but continuous type non-linearity. This system maintains
the identical linear parameters of Examples I and II, however, f e

12(t) now contains
a term with a non-integer exponent, similar to non-linearities caused by Hertzian
contact forces [21]. This is designated as Example IV,

f e
12(t)= k1Dx12(t)+ h · sgn (Dx12(t))=Dx12(t)=1·8, h=1·0 MN/m1·8, (32a, b)

where sgn (Dx12(t))=Dx12(t)/=Dx12(t)=. First, to illustrate that this type of system
can in fact be identified given the correct non-linear mathematical form, Model
AIV is employed that assumes the true form as

Model AIV: pe
12(t)= k1x12(t)+ a · y(t)= k1Dx12(t)

+a · sgn (Dx12(t))=Dx12(t)=1·8. (33)

As shown in Figure 16(a), H
 [c2]
11 (v) accurately estimates the true H11(v). However,

in practice, as with the other examples, the a priori knowledge of the mathematical
form of f e

12(t) may be unknown. Therefore, as executed with Example II, a more
plausible strategy is to estimate (32a) with a polynomial expansion given by

Model BIV: pe
12(t)= k1Dx12(t)+ s

n

i=2

aiyi (Dx12(t))

= k1Dx12(t)+ s
n

i=2

aiDxi
12(t). (34)

Model BIV is applied to Example IV for values of n=5 and 10. Resulting H
 [c2]
11 (v)

are shown in Figure 16(b). Note that n=10 is the largest possible value that could
be chosen without numerical conditioning problems to arise. As can be seen from
Figure 16(b), H
 [c2]

11 (v) improves with increasing values of n. This increase in
accuracy is also indicated by ĝ2

M1(v) of Figure 17(a). Notice the y-axis is displayed
only from 0·88 to unity in order to illustrate the differences between the two curves.
Shown in Figure 17(b) are estimated stiffness curves for n=5 and 10 along with
the true stiffness curve. Note, however, the Spectral Method estimates linear modal
parameters and not physical parameters such as k1. Hence, these curves do not
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Figure 16. Magnitude of Dynamic compliance functions of Example IV. (a) Model AIV used for
‘‘Hc2’’ estimate. ——, H
 [c2]

11 (v); ---, H
 [1]
11 (v); www, H21(v). (b) Model BIV used for ‘‘Hc2’’ estimate.

——, H
 [c2]
11 (v) with n=10; ---, H
 [c2]

11 (v) with n=5; www, H21(v).

include the linear stiffness term and accordingly one should not interpret these
plots as physical stiffness curves. As shown, the estimated non-linear stiffness
approaches the true with increasing n. This example suggests that the employment
of polynomial expansions to describe the unknown non-linearities may be a
successful strategy once numerical conditioning errors are eliminated so that
additional terms can be included in the model. Further examination of non-integer
exponent type non-linearities as given by equation (32a) is needed since literature
on this subject is sparse.
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Figure 17. Cumulative coherence and stiffness estimates of Example IV. (a) Cumulative coherence
of Model BIV. ——, ĝ2

M1(v) with n=10; ---, ĝ2
M1(v) with n=5. (b) Non-linear components of stiffness

estimates. ——, p̂e
12(t) with n=10; ---, p̂e

12(t) with n=5; www, f e
12(t).

8. CONCLUSION

When identifying non-linear mechanical and structural systems, some a priori
knowledge of the nature and mathematical form of the non-linearities is necessary.
Nonetheless, a unique model is still not guaranteed since this knowledge may be
limited and different mathematical formulae for describing the non-linearities may
result in reasonably accurate estimates. Also, the presence of uncorrelated noise
often corrupts the response and excitation data. These problems have been
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illustrated here by four simulation systems, and for two of these examples, in the
presence of moderate and high measurement noise levels. Both the Restoring
Force Temporal Method [10, 11] and the ‘‘Reverse Path’’ Spectral Method [7] have
been employed for identification. Although each technique has its own merits, this
article does not attempt to quantifiably compare their performance but rather
illustrates that the problems addressed here are not method dependent; instead
they must be addressed regardless of whichever technique is employed. Coherence
functions have been developed based on the Spectral Method and their application
has been demonstrated. These coherence functions indicate the level of
uncorrelated noise present in the data and also indicate when reasonably accurate
models have been chosen to describe the non-linear systems. Therefore, parameters
estimated by techniques such as the ones discussed here can be assessed with some
level of confidence.

With the capability of now being able to indicate the accuracy of the
mathematical models chosen to describe non-linear systems, ongoing and future
research will extend the identification techniques examined here to other complex
problems including damping non-linearities. The next promising area appears to
be the non-integer non-linearity which has sparsely been addressed in the scientific
literature [21]. Future research will also focus on enhancing conditioned and
unconditioned spectral density functions that are corrupted by uncorrelated
measurement noise. A reference method [19] will act as a starting point for such
an investigation. Also, time domain averaging operations and cross-correlation
techniques may be adapted to improve the Restoring Force Method in the
presence of uncorrelated measurement noise.
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APPENDIX A: LIST OF SYMBOLS

a coefficient vector of nonlinear functions
a coefficient non-linear functions
B(v) linear dynamic stiffness matrix
c linear damping coefficient
C linear damping matrix
d(x(t), ẋ(t)) vector of motion dependent restoring force functions
fe
12(t) elastic force acting on m1

f(t) generalized excitation vector with Gaussian time history
F(v) spectra of f(t)
G(v) single-sided cross-spectral density matrix
H(v) linear dynamic compliance matrix
i z−1
k linear stiffness element
K linear stiffness matrix
L(v) frequency response function between non-linear function Y(v) and F(v)
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m mass
M mass matrix
n number of types of non-linearities
n(t) uncorrelated noise vector
N dimension of system
N(v) vector of uncorrelated noise spectra
pe

12(t) assumed model of f e
12(t)

t time
T time window
x(t) generalized displacement vector
X(v) spectra of x(t)
y(Dx12(t)) non-linear function
Y(v) spectra of y(Dx12(t))
z(x(t), ẋ(t)) vector of the assumed form of the system’s constraint forces
b coefficient of polynomial term describing f e

12(t) for Examples I–III
f mode shape
Dt time step for numerical simulation
Dx12(t) relative displacement=x1(t)− x2(t)
ĝ2(v) ordinary coherence function
G(v) Fourier transform of d(x(t), ẋ(t))
h coefficient of polynomial term describing f e

12(t) for Example IV
v frequency or natural frequency
j
 2(v) partial coherence function
z damping ratio
{0}, 0 null vector and matrix

Operators
E[ · ] expected value
F[ · ] Fourier transform
Im [ · ] imaginary part
Re [ · ] real part
� · �v spectral mean

Subscripts
c1, c2 conditioned estimates of H
e effective matrix determined from linearization
F excitation vector
i ith mass location
j jth non-linear function
(+j) correlated with the jth non-linear function
(−1:j) uncorrelated with the 1st through the jth non-linear function
(−1:n) uncorrelated with the 1st through the nth non-linear function, i.e., linear

component
M signifies cumulative coherence function
n contains only non-linear restoring force terms
N uncorrelated noise
r rth mode
X response vector
Y coherence function which indicates contribution from non-linearities
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Superscripts
* complex conjugate
T transpose
−1 inverse
[1] ‘‘H1’’ estimate
[c1] ‘‘Hc1’’ estimate
[c2] ‘‘Hc2’’ estimate

Embellishments
˜ quantity contaminated by noise
ˆ estimated quantity
˙ first derivative with respect to time
¨ second derivative with respect to time
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